3.3 \(\int \csc (c+d x) (a+a \csc (c+d x)) (A+A \csc (c+d x)) \, dx\)

Optimal. Leaf size=51 \[ -\frac{2 a A \cot (c+d x)}{d}-\frac{3 a A \tanh ^{-1}(\cos (c+d x))}{2 d}-\frac{a A \cot (c+d x) \csc (c+d x)}{2 d} \]

[Out]

(-3*a*A*ArcTanh[Cos[c + d*x]])/(2*d) - (2*a*A*Cot[c + d*x])/d - (a*A*Cot[c + d*x]*Csc[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0576248, antiderivative size = 51, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {21, 3788, 3767, 8, 4046, 3770} \[ -\frac{2 a A \cot (c+d x)}{d}-\frac{3 a A \tanh ^{-1}(\cos (c+d x))}{2 d}-\frac{a A \cot (c+d x) \csc (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]*(a + a*Csc[c + d*x])*(A + A*Csc[c + d*x]),x]

[Out]

(-3*a*A*ArcTanh[Cos[c + d*x]])/(2*d) - (2*a*A*Cot[c + d*x])/d - (a*A*Cot[c + d*x]*Csc[c + d*x])/(2*d)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \csc (c+d x) (a+a \csc (c+d x)) (A+A \csc (c+d x)) \, dx &=\frac{A \int \csc (c+d x) (a+a \csc (c+d x))^2 \, dx}{a}\\ &=\frac{A \int \csc (c+d x) \left (a^2+a^2 \csc ^2(c+d x)\right ) \, dx}{a}+(2 a A) \int \csc ^2(c+d x) \, dx\\ &=-\frac{a A \cot (c+d x) \csc (c+d x)}{2 d}+\frac{1}{2} (3 a A) \int \csc (c+d x) \, dx-\frac{(2 a A) \operatorname{Subst}(\int 1 \, dx,x,\cot (c+d x))}{d}\\ &=-\frac{3 a A \tanh ^{-1}(\cos (c+d x))}{2 d}-\frac{2 a A \cot (c+d x)}{d}-\frac{a A \cot (c+d x) \csc (c+d x)}{2 d}\\ \end{align*}

Mathematica [B]  time = 0.0399808, size = 137, normalized size = 2.69 \[ -\frac{2 a A \cot (c+d x)}{d}-\frac{a A \csc ^2\left (\frac{1}{2} (c+d x)\right )}{8 d}+\frac{a A \sec ^2\left (\frac{1}{2} (c+d x)\right )}{8 d}+\frac{a A \log \left (\sin \left (\frac{c}{2}+\frac{d x}{2}\right )\right )}{d}+\frac{a A \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{2 d}-\frac{a A \log \left (\cos \left (\frac{c}{2}+\frac{d x}{2}\right )\right )}{d}-\frac{a A \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]*(a + a*Csc[c + d*x])*(A + A*Csc[c + d*x]),x]

[Out]

(-2*a*A*Cot[c + d*x])/d - (a*A*Csc[(c + d*x)/2]^2)/(8*d) - (a*A*Log[Cos[c/2 + (d*x)/2]])/d - (a*A*Log[Cos[(c +
 d*x)/2]])/(2*d) + (a*A*Log[Sin[c/2 + (d*x)/2]])/d + (a*A*Log[Sin[(c + d*x)/2]])/(2*d) + (a*A*Sec[(c + d*x)/2]
^2)/(8*d)

________________________________________________________________________________________

Maple [A]  time = 0.045, size = 57, normalized size = 1.1 \begin{align*}{\frac{3\,Aa\ln \left ( \csc \left ( dx+c \right ) -\cot \left ( dx+c \right ) \right ) }{2\,d}}-2\,{\frac{Aa\cot \left ( dx+c \right ) }{d}}-{\frac{Aa\cot \left ( dx+c \right ) \csc \left ( dx+c \right ) }{2\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)*(a+a*csc(d*x+c))*(A+A*csc(d*x+c)),x)

[Out]

3/2/d*A*a*ln(csc(d*x+c)-cot(d*x+c))-2*a*A*cot(d*x+c)/d-1/2*a*A*cot(d*x+c)*csc(d*x+c)/d

________________________________________________________________________________________

Maxima [A]  time = 0.999313, size = 108, normalized size = 2.12 \begin{align*} \frac{A a{\left (\frac{2 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} - \log \left (\cos \left (d x + c\right ) + 1\right ) + \log \left (\cos \left (d x + c\right ) - 1\right )\right )} - 4 \, A a \log \left (\cot \left (d x + c\right ) + \csc \left (d x + c\right )\right ) - \frac{8 \, A a}{\tan \left (d x + c\right )}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)*(a+a*csc(d*x+c))*(A+A*csc(d*x+c)),x, algorithm="maxima")

[Out]

1/4*(A*a*(2*cos(d*x + c)/(cos(d*x + c)^2 - 1) - log(cos(d*x + c) + 1) + log(cos(d*x + c) - 1)) - 4*A*a*log(cot
(d*x + c) + csc(d*x + c)) - 8*A*a/tan(d*x + c))/d

________________________________________________________________________________________

Fricas [B]  time = 0.49257, size = 273, normalized size = 5.35 \begin{align*} \frac{8 \, A a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 2 \, A a \cos \left (d x + c\right ) - 3 \,{\left (A a \cos \left (d x + c\right )^{2} - A a\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) + 3 \,{\left (A a \cos \left (d x + c\right )^{2} - A a\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right )}{4 \,{\left (d \cos \left (d x + c\right )^{2} - d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)*(a+a*csc(d*x+c))*(A+A*csc(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(8*A*a*cos(d*x + c)*sin(d*x + c) + 2*A*a*cos(d*x + c) - 3*(A*a*cos(d*x + c)^2 - A*a)*log(1/2*cos(d*x + c)
+ 1/2) + 3*(A*a*cos(d*x + c)^2 - A*a)*log(-1/2*cos(d*x + c) + 1/2))/(d*cos(d*x + c)^2 - d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} A a \left (\int \csc{\left (c + d x \right )}\, dx + \int 2 \csc ^{2}{\left (c + d x \right )}\, dx + \int \csc ^{3}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)*(a+a*csc(d*x+c))*(A+A*csc(d*x+c)),x)

[Out]

A*a*(Integral(csc(c + d*x), x) + Integral(2*csc(c + d*x)**2, x) + Integral(csc(c + d*x)**3, x))

________________________________________________________________________________________

Giac [A]  time = 1.36763, size = 126, normalized size = 2.47 \begin{align*} \frac{A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 12 \, A a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) + 8 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{18 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 8 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + A a}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)*(a+a*csc(d*x+c))*(A+A*csc(d*x+c)),x, algorithm="giac")

[Out]

1/8*(A*a*tan(1/2*d*x + 1/2*c)^2 + 12*A*a*log(abs(tan(1/2*d*x + 1/2*c))) + 8*A*a*tan(1/2*d*x + 1/2*c) - (18*A*a
*tan(1/2*d*x + 1/2*c)^2 + 8*A*a*tan(1/2*d*x + 1/2*c) + A*a)/tan(1/2*d*x + 1/2*c)^2)/d